

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY and PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: SSP701S	COURSE NAME: SOLID STATE PHYSICS
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER			
EXAMINER(S)	Prof Dipti Ranjan Sahu		
MODERATOR:	Dr Zivayi Chiguvare		

INSTRUCTIONS	
 Answer all five questions. 	
2. Write clearly and neatly.	
3. Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Que	stion 1	[20]
1.1	Explain the following terms as applied to crystals: (i) Lattice parameters of a unit cell (ii) Primitive cell	(4)
1.2	Sodium transform from bcc to hcp at about T = 23K. Assuming that the density remains fixed, and the c/a ratio is ideal, calculate the hcp lattice spacing a given that the cubic lattice spacing $a' = 4.23$ Å in the cubic phase.	(6)
1.3	Draw sketches illustrating a (100) plane, a (110) plane, and a (111) plane in a cubic unit cell. How many equivalent {100} planes are there in a cubic crystal?	(10)
Ques	stion 2	[20]
2.1	Between covalent bonded materials and metallic bonded materials which are generally less dense and why?	(4)
2.2	What is hydrogen bond? How it different from a dipole bond? Describe the role of hydrogen during formation of ice	(6)
2.3	Magnesium Oxide ($Mg^{2+}O^{2-}$) and Sodium Chloride (Na^+Cl^-) have the same form of interatomic potential. The only difference is that z=2 for Magnesium Oxide and z=1 for Sodium Chloride. Find the ratio of their equilibrium separations.	(10)
Ques	etion 3	[20]
3. 1	What do you mean by elastic wave in solids?	(4)
C	Sketch schematically the dispersion relations of lattice vibrations for (a) a mono atomic linear thain and (b) a diatomic linear chain. Indicate in the figures how one can determine the velocity cound by a geometrical construct.	of (6)
3.3	What is Einstein temperature and frequency? Explain Einstein theory of specific heat?	(10)
Ques	stion 4	[20]
4.1	Find the drift velocity of the free electrons in a copper wire whose cross-sectional area (A) is $1 \times 10^{-6} \text{m}^{-2}$ when the wire carries a current of 1.0 Amperes. Assume that each copper atom contributes one electron to the electron gas (Given: electron density in copper = 8.5×10^{28} electrons m ⁻³)	(4)
4.2	What is the Lorentz number and explain it using the Wiedemann-Franz law?	(6)
4.3	Explain free electron theory of metals and mention its advantages and drawbacks.	(10)

Question 5

[20]

5.1 In what important respect does the conductivity of a conductor differ from that of an intrinsic semiconductor.

(4)

5.2 The resistivity of pure silicon at room temperature is 3000 ohm-m. Mobilities of electrons and holes in silicon are 0.14 m²v⁻¹s⁻¹ and 0.05 m²v⁻¹s⁻¹ respectively. Calculate the intrinsic carrier density of silicon at room temperature.

(6)

5.3 Describe Fermi-Dirac statistics. Sketch Fermi probability function at two different temperatures. (10)

Given fundamental constants.

Speed of light = $3x10^8$ m/s Planck constant = 6.626×10^{-34} Js Mass of electron= 9.1×10^{-31} kg Charge of electron = 1. 6×10^{-19} C Avogadro's number= 6.022×10^{23} /mole Boltzmann Constant = 1.38×10^{-23} JK⁻¹

-----END------